Monte Carlo quasi-heat-bath by approximate inversion

Philippe de Forcrand*

Swiss Center for Scientific Computing (SCSC), ETH-Zürich, CH-8092 Zürich, Switzerland

(Received 5 November 1998)

When sampling the distribution $P(\vec{\phi}) \propto \exp(-|A\vec{\phi}|^2)$, a global heat bath normally proceeds by solving the linear system $A\vec{\phi} = \vec{\eta}$, where $\vec{\eta}$ is a normal Gaussian vector, exactly. This paper shows how to preserve the distribution $P(\vec{\phi})$ while solving the linear system with arbitrarily low accuracy. Generalizations are presented. [S1063-651X(99)13303-8]

PACS number(s): 02.70.Lq, 02.50.Ng, 52.65.Pp, 11.15.Ha

In Monte Carlo simulations, it is frequently the case that one wants to sample a vector $\vec{\phi}$ from a distribution of the Gaussian type $\propto \exp(-|A\vec{\phi}|^2)$. Typically, $\vec{\phi}$ has many components, and A is a large, sparse matrix. In lattice field theory, $\vec{\phi}$ is the value of the continuum field $\vec{\varphi}$ at regular grid points, and A is the discretized version of some differential operator A. Illustrative examples used in this paper are \mathcal{A} $=m+i\vec{p}$ (free field) and $\mathcal{A}=m+ip$ (Dirac operator). The goal of the Monte Carlo simulation is to provide independent configurations of $\vec{\phi}$ at the least cost.

The brute-force approach consists of drawing successive random vectors $\vec{\eta}^{(k)}$ from the normal Gaussian distribution $\exp(-|\vec{\eta}|^2)$, and of solving $A\vec{\phi}^{(k)}=\vec{\eta}^{(k)}$. The solution of this linear system can be efficiently obtained with an iterative linear solver (Conjugate Gradient if A is Hermitian, BiCG-Stab otherwise). This approach can be called a global heat bath, because $\vec{\phi}^{(k+1)}$ has no memory of $\vec{\phi}^{(k)}$: the heat bath has touched all the components of $\vec{\phi}$. To avoid a bias, the solver must be iterated to full convergence, which is often prohibitively expensive. One may try to limit the accuracy while maintaining the bias below statistical errors, but this requires a delicate compromise difficult to tune a priori. A notable example of this global heat bath approach is the stochastic evaluation of inverse Dirac matrix elements, where several hundred "noise vectors" $\vec{\eta}^{(k)}$ are inverted to yield $(A^{\dagger}A)_{ii}^{-1} \approx \langle \phi_i \phi_i^{\dagger} \rangle_k$. An abundant literature has been devoted to the optimization of this procedure [1,2].

For the free field or the Dirac operator mentioned above, the number of iterations of the solver required to reach a given accuracy grows like the correlation length $\xi \equiv 1/m$. Thus the work per new, independent, $\vec{\phi}$ is $c\xi^z$, where *z*, the dynamical critical exponent, is 1. However, the prefactor *c* is large. For this reason, local updates, where only one component of $\vec{\phi}$ is changed at a time, are often preferred. They usually provide an independent $\vec{\phi}$ after an amount of work $c'\xi^2$, but with a much smaller prefactor *c'* [3]. This paper presents an adaptation of the global heat bath which allows for arbitrarily low accuracy in the solution of $A\vec{\phi} = \vec{\eta}$, thus reducing the prefactor *c*, while maintaining the correct distribution. This is obtained by the introduction of an acceptreject test of the Metropolis type, making the procedure a "quasi-heat-bath." The method is described in Sec. I. Generalizations, including a local version, are presented afterwards.

I. QUASI-HEAT-BATH

Efficient Monte Carlo often relies on the subtle introduction of auxiliary degrees of freedom. Consider here a vector $\vec{\chi}$ distributed according to $(1/Z_{\chi}) \exp(-|\vec{\chi}-A\vec{\phi}|^2)$. Note that Z_{χ} is a constant (π^N for an *N*-component complex vector) independent of $\vec{\phi}$. Therefore, the original distribution of $\vec{\phi}$, $(1/Z_{\phi}) \exp(-|\vec{A}\vec{\phi}|^2)$, is unchanged by the introduction of $\vec{\chi}$:

$$\frac{1}{Z_{\phi}} \int \mathcal{D}\vec{\phi} \, e^{-|A\vec{\phi}|^2} = \frac{1}{Z_{\phi}Z_{\chi}} \int \mathcal{D}\vec{\phi} \, \mathcal{D}\vec{\chi} \, e^{-|A\vec{\phi}|^2 - |\vec{\chi} - A\vec{\phi}|^2}.$$
(1)

We can now alternate Monte Carlo steps on $\vec{\phi}$ and $\vec{\chi}$, with the following prescription.

(1) Perform a global heat bath on $\vec{\chi}$:

$$\vec{\chi} \leftarrow A \, \vec{\phi} + \vec{\eta},$$
 (2)

where $\vec{\eta}$ is a normal Gaussian vector.

(2) Reflect $A\vec{\phi}$ with respect to the minimum of the quadratic form $(|A\vec{\phi}|^2 + |\vec{\chi} - A\vec{\phi}|^2)$:

 $A\vec{\phi} \leftarrow \vec{\chi} - A\vec{\phi},$

i.e.,

$$\vec{\phi} \leftarrow A^{-1} \vec{\chi} - \vec{\phi}. \tag{3}$$

Step (2) conserves the probability of $\vec{\phi}$ but is not ergodic. Step (1) provides the ergodicity. Note that step 2 exchanges the two terms $|A\vec{\phi}|^2$ and $|\vec{\chi}-A\vec{\phi}|^2$ in the quadratic form. Since $\vec{\chi}-A\vec{\phi}$ in step (1) is set to a new random vector $\vec{\eta}$, $A\vec{\phi}$ at the end of step (2) is equal to $\vec{\eta}$. Therefore, a completely decorrelated $\vec{\phi}$ has been generated. The vector $\vec{\chi}$ is not needed any longer and can be discarded.

3698

^{*}Electronic address: forcrand@scsc.ethz.ch

This two-step algorithm can now be modified slightly. The vector $A^{-1}\vec{\chi}$ in Eq. (3) need not be computed exactly. Consider an approximate solution $\vec{\zeta}$ with $A\vec{\zeta} = \vec{\chi} - \vec{r}$, where $\vec{r} \neq \vec{0}$ is the residual. Step (2) should now be considered as a way to propose a candidate $\vec{\phi'} = \vec{\zeta} - \vec{\phi}$ in a Metropolis procedure. Since $\vec{\zeta}$ is completely independent of $\vec{\phi}$ or $\vec{\phi'}$, the probability of proposing $\vec{\phi'}$ given $\vec{\phi}$ is the same as that of proposing $\vec{\phi}$ given $\vec{\phi'}$. Detailed balance will be satisfied with an additional step:

(3) Accept the candidate $\vec{\phi'} = \vec{\zeta} - \vec{\phi}$ with probability

$$P_{\rm acc}(\vec{\phi} \to \vec{\phi'}) = \min(1, e^{-\Delta S}), \tag{4}$$

where $\Delta S = |A\vec{\phi'}|^2 + |\vec{\chi} - A\vec{\phi'}|^2 - |A\vec{\phi}|^2 - |\vec{\chi} - A\vec{\phi}|^2$. Simple algebra shows that

$$\Delta S = 2 \operatorname{Re}[\vec{r}^{\dagger} \cdot (A \vec{\phi} - A \vec{\phi'})],$$

which is antisymmetric under the exchange $\vec{\phi} \leftrightarrow \vec{\phi'}$, as it should be. If the linear system $A\vec{\zeta} = \vec{\chi}$ is solved exactly ($\vec{r} = \vec{0}$), then $\Delta S = 0$, and one recovers the original global heat bath with acceptance 1. Otherwise, the candidate $\vec{\phi'}$ may be rejected, in which case $\vec{\phi}^{(k)}$ must be included once more in the Monte Carlo sequence: $\vec{\phi}^{(k+1)} = \vec{\phi}^{(k)}$. As the residual is allowed to grow, the average acceptance falls. But no bias is introduced: the distribution of $\vec{\phi}$ remains $(1/Z_{\phi}) \exp(-|A\vec{\phi}|^2)$.

The optimal magnitude of \vec{r} is thus the result of a compromise between accuracy and acceptance. The average acceptance of the prescription (4) is $\operatorname{erfc}(\sqrt{\langle (\Delta S)^2 \rangle / 8})$ [5]. Here $\langle (\Delta S)^2 \rangle$ can be evaluated as a function of the convergence criterion ϵ of the linear solver. If the solver yields a residual \vec{r} such that $||\vec{r}||/||\vec{\chi}|| \leq \epsilon$, then $\langle (\Delta S)^2 \rangle \leq 8N\epsilon^2$, where $A\vec{\phi}, A\vec{\phi'}$, and \vec{r} have been considered independent random Gaussian vectors with variances N, N, and $2\epsilon^2N$, respectively, and N is the number of their components. Therefore, the acceptance is simply

$$\langle \operatorname{acceptance} \rangle \approx \operatorname{erfc}(\epsilon \sqrt{N}).$$
 (5)

In other words, the acceptance is entirely determined by ϵ and *N*, the number of degrees of freedom (the volume) of the system, and is *independent* of the matrix *A*. To maintain a constant acceptance as the volume grows, the convergence criterion for the solution of $A\vec{\zeta} = \vec{\chi}$ should vary like $1/\sqrt{N}$. An accuracy $\epsilon \sim 10^{-3} - 10^{-4}$ provides an acceptance of 80–90% up to systems of 10^6 degrees of freedom. There is no need for higher accuracy.

The convergence of an iterative solver is typically exponential: $\epsilon_n \sim e^{-n/\xi}$ after *n* iterations. Therefore, the above prescription reduces the work by a factor of 2–3 compared to the usual approach which iterates the solver until "full" convergence (which typically means $\epsilon \leq 10^{-8} - 10^{-12}$). Illustrative results are shown in Fig. 1 for the case of the Wilson-Dirac operator. This figure shows the number of iterations, the acceptance, and the work per independent $\vec{\phi}$ as a function

FIG. 1. As the stopping criterion in the iterative solver is varied, the number of solver iterations (top) and the acceptance of the quasi-heat-bath (middle) change. The acceptance is well described by Eq. (5) (solid line). The work per new $\vec{\phi}$ (bottom) shows a clear minimum. The optimal stopping criterion depends on the system size only (49 152 here).

of ϵ . The acceptance obeys $\operatorname{erfc}(c \epsilon \sqrt{N})$, where c < 1 (0.75 here) reflects the fact that the residual is always smaller (*c* times smaller on average) than required by the stopping criterion. For this system of N=49152 variables (8⁴ lattice), the optimal stopping criterion is near 10^{-3} .

II. GENERALIZATIONS

A. Overrelaxation and underrelaxation

Consider a modification of Eq. (1) with a parameter λ :

$$\frac{1}{Z_{\phi}} \int \mathcal{D}\vec{\phi} \, e^{-|A\vec{\phi}|^2} = \frac{1}{Z_{\phi}Z_{\chi}} \int \mathcal{D}\vec{\phi} \, \mathcal{D}\vec{\chi} \, e^{-|A\vec{\phi}|^2 - |\vec{\chi} - \lambda A\vec{\phi}|^2}.$$
(6)

The same three-step algorithm of Sec. I now reads as follows.

(1) Heat bath on χ :

$$\vec{\chi} \leftarrow \lambda A \, \vec{\phi} + \vec{\eta}.$$
 (7)

(2) Reflection of $\tilde{\phi}$ about the approximate minimum of the quadratic form:

$$\vec{\phi'} = \frac{2\lambda}{1+\lambda^2} \vec{\zeta} - \vec{\phi},\tag{8}$$

where $A\vec{\zeta} = \vec{\chi} - \vec{r}$.

(3) Accept $\vec{\phi'}$ with probability $P_{acc}(\vec{\phi} \rightarrow \vec{\phi'})$ = min(1, $e^{-\Delta S}$) where $\Delta S = |A\vec{\phi'}|^2 + |\vec{\chi} - \lambda A\vec{\phi'}|^2 - |A\vec{\phi}|^2$ $-|\vec{\chi} - \lambda A\vec{\phi}|^2$, and, by simple algebra,

$$\Delta S = 2\lambda \operatorname{Re}[\vec{r}^{\dagger} \cdot (A\vec{\phi} - A\vec{\phi'})].$$
(9)

Thus, as λ decreases from 1, $\langle (\Delta S)^2 \rangle$ also decreases, which boosts the acceptance. On the other hand, Eq. (8) indicates that $\vec{\phi'}$ approaches $-\vec{\phi}$ as $\lambda \rightarrow 0$, so that $\vec{\phi'}$ and $\vec{\phi}$ become very (anti)correlated. The parameter λ allows interpolation between simple reflection ($\lambda = 0$), and no motion at all ($\lambda = +\infty$). In fact, substituting Eq. (7) into Eq. (8) gives

$$\vec{\phi'} = -\frac{1-\lambda^2}{1+\lambda^2}\vec{\phi} + \frac{2\lambda}{1+\lambda^2}(A^{-1}\vec{\eta} - \vec{r}).$$
(10)

Taking $\vec{r}=\vec{0}$, one can identify this prescription with that of Adler's stochastic over-relaxation (AOR) [4]:

$$\overline{\phi'} = (1-\omega)\,\overline{\phi} + \sqrt{\omega(2-\omega)}A^{-1}\,\overline{\eta},\tag{11}$$

provided $\omega = 2/(1 + \lambda^2)$. The quasi-heat-bath can be viewed as a flexible, *global* generalization of Adler's AOR.

It is clear from Eq. (9) that $\lambda < 1$ allows for a looser convergence criterion $\epsilon \sim 1/\lambda$. However, the work to reach convergence typically grows like $-\log \epsilon$, whereas Eq. (10) indicates that the number of Monte Carlo steps to decorrelate $\vec{\phi}$ will grow like $1/\lambda^2$. Therefore, it seems inadvisable to depart from $\lambda = 1$.

Nonetheless, there are many situations where a completely independent $\vec{\phi}$ at each Monte Carlo step is a wasteful luxury. When the matrix A fluctuates and depends on other variables U, it will take some time for the U to equilibrate in the new background $\vec{\phi}^{(k+1)}$. Equilibration will be achieved quickly over short distances, more slowly over large ones. In that case it is useful to refresh the short-wavelength modes of $\vec{\phi}$ at every MC step, but not the long-wavelength ones. The situation is similar for the stochastic evaluation of inverse Dirac matrix elements: one is interested in estimating $(A^{\dagger}A)_{ij}^{-1}$, where the distance |i-j| is short. Refreshing the long-wavelength modes every time is wasteful.

B. Selective mode refresh

The quasi-heat-bath may be tailored for this purpose by modifying the basic equation (1) to

$$\frac{1}{Z_{\phi}} \int \mathcal{D}\vec{\phi} \, e^{-|A\vec{\phi}|^2} = \frac{1}{Z_{\phi}Z_{\chi}} \int \mathcal{D}\vec{\phi} \, \mathcal{D}\vec{\chi} \, e^{-|A\vec{\phi}|^2 - |\vec{\chi} - C\vec{\phi}|^2}.$$
(12)

The matrix *C* plays the role of the earlier λA , except that now λ depends on the eigenmode considered. The three basic steps of the algorithm become the following.

(1) Heat bath on $\vec{\chi}$:

$$\vec{\chi} \leftarrow C\vec{\phi} + \vec{\eta};$$
 (13)

(2) Reflection of $\vec{\phi}$ about the approximate minimum of the quadratic form:

$$\vec{\phi'} = \vec{\zeta} - \vec{\phi}, \tag{14}$$

where

$$\frac{1}{2}(A^{\dagger}A + C^{\dagger}C)\vec{\zeta} = C^{\dagger}\vec{\chi} - \vec{r}.$$
(15)

(3) Accept $\vec{\phi'}$ with probability $P_{acc}(\vec{\phi} \rightarrow \vec{\phi'}) = \min(1, e^{-\Delta S})$, where

$$\Delta S = 2 \operatorname{Re}[\vec{r^{\dagger}} \cdot (\vec{\phi} - \vec{\phi'})].$$

For simplicity, consider the case where C and A commute. The candidate $\vec{\phi'}$ can be expressed as

$$\vec{\phi'} = -(A^{\dagger}A + C^{\dagger}C)^{-1}(A^{\dagger}A - C^{\dagger}C)\vec{\phi} + 2(A^{\dagger}A + C^{\dagger}C)^{-1}(C^{\dagger}\vec{\eta} - \vec{r}).$$

One wishes to obtain a heat bath $(\lambda \sim 1 \text{ in Sec. II A})$ on short-wavelength modes. This implies a cancellation of eigenvalues in $(A^{\dagger}A - C^{\dagger}C)$ for short wavelengths. For long wavelengths a heat bath is not necessary, and one could have $\lambda \sim 0$ or $+\infty$. One possible way to implement this would be

$$C = F^{-1}\Lambda FA$$
,

where *F* is the Fourier transform and Λ is a diagonal matrix with entries $\lambda(\vec{k})$ growing from 0 to 1 with momentum $|\vec{k}|$. However, for operators \mathcal{A} of the free field or Dirac type, a simpler and equivalent way consists of modifying the mass parameter *m* to $m_C > m$. This is equivalent to $\lambda(|\vec{k}|) = \sqrt{(m_C^2 + k^2)/(m^2 + k^2)}$.

The mass which enters into the linear system to solve (15) is $m_{\rm eff} = \sqrt{(m^2 + m_C^2)/2}$. As m_C is increased, so is $m_{\rm eff}$. The work to solve Eq. (15) approximately decreases as $1/m_{\rm eff}$. Therefore, one achieves the desired effect of refreshing short-wavelength modes at cheaper cost. By drawing m_C randomly from a suitable distribution at each Monte Carlo step, the tailored refreshing of all Fourier modes with the desired frequency can be achieved.

C. Local version

The quasi-heat-bath described so far is a global update procedure: all components of $\vec{\phi}$ are updated together. A local version readily suggests itself: restricting the auxiliary vector $\vec{\chi}$ to have only one nonzero component, $\chi_i = \chi \delta_{i,i_0}$ (or any subset of components). Equation (1) then becomes

$$\frac{1}{Z_{\phi}} \int \mathcal{D}\vec{\phi} \, e^{-|A\vec{\phi}|^2} = \frac{1}{Z_{\phi}Z_{\chi}} \int \mathcal{D}\vec{\phi} \, \mathcal{D}\vec{\chi} \, e^{-|A\vec{\phi}|^2 - |\chi - (A\vec{\phi})_{i_0}|^2}.$$
(16)

The algorithm is unchanged.

(1) Heat bath on χ : $\chi \leftarrow (A \vec{\phi})_{i_0} + \eta$.

(2) Approximate reflection of $\vec{\phi}: \vec{\phi'} = \vec{\zeta} - \vec{\phi}$, where $A\vec{\zeta} = \vec{\chi} - \vec{r}$.

(3) Accept $\vec{\phi'}$ with probability $P_{acc}(\vec{\phi} \rightarrow \vec{\phi'})$ = min(1, $e^{-\Delta S}$), where $\Delta S = \operatorname{Re}[\vec{r^{\dagger}} \cdot (A\vec{\phi} - A\vec{\phi'})]$ + $\operatorname{Re}(r_{i_0}^{\star}[(A\vec{\phi})_{i_0} - (A\vec{\phi'})_{i_0}]).$ In this case, $\bar{\zeta}$ is the approximate Green's function of *A* for a source at i_0 . It will have a support of size $O(\xi)$, so that the local change in χ_{i_0} will induce a change in ϕ over a whole domain. By varying i_0 from 1 to *N*, one sweeps the whole system and generates a new vector $\phi^{(k+1)}$. If the acceptance is maintained close to 1, $\phi^{(k+1)}$ will essentially be uncorrelated with $\phi^{(k)}$. However, the work per local update is proportional to ξ^d in *d* dimensions, so that this approach becomes very inefficient when the correlation length ξ is large. Nevertheless, it may be advantageous for moderate ξ . The reason is that the approximate solution $\vec{\zeta} \approx A^{-1}\chi \,\delta(i_0)$ need not be obtained by a Krylov method, which applies successive powers of *A* to the initial residual. Instead, one may search for the best solution $\vec{\zeta}$ among all vectors of localized support, for instance, i_0 and its nearest neighbors.

D. Adler's stochastic overrelaxation

Finally, the local variable $\chi \delta(i, i_0)$ may interact with $\bar{\phi}$ in the simplest way, with a contact interaction. This modifies Eq. (1) to

$$\frac{1}{Z_{\phi}} \int \mathcal{D}\vec{\phi} \, e^{-|A\vec{\phi}|^2} = \frac{1}{Z_{\phi}Z_{\chi}} \int \mathcal{D}\vec{\phi} \, d\chi \, e^{-|A\vec{\phi}|^2 - |\chi - \lambda\phi(i_0)|^2}.$$
(17)

If one chooses to update only $\phi(i_0)$ and leave the other components of $\vec{\phi}$ unchanged, then there is no need to invert the matrix *A*. The algorithm simplifies to the following.

(1) Heat bath on $\chi: \chi \leftarrow \lambda \phi(i_0) + \eta$.

W

(2) Reflection of $\phi(i_0)$ with respect to the minimum of the quadratic form,

$$(m^2 + \lambda^2) |\phi(i_0)|^2 + [\phi(i_0)^{\dagger}(\psi - \lambda\chi) + \text{H.c.}] + \text{const},$$

here $m^2 \equiv (A^{\dagger}A)_{i_0i_0}$ and $\psi \equiv (A^{\dagger}A)_{i_0j}\phi(j).$

This reflection is exact, and so the acceptance test disappears. The new reflected value is

$$\phi'(i_0) = 2\frac{\lambda\chi - \psi}{1 + \lambda^2} - \phi(i_0) = -\frac{1 - \lambda^2}{1 + \lambda^2}\phi(i_0) - \frac{2}{1 + \lambda^2}\psi$$
$$+ \frac{2\lambda}{1 + \lambda^2}\eta.$$

This prescription is identical to Adler's stochastic overrelaxation [4] with the change of notation $\omega \leftrightarrow 2/(1 + \lambda^2)$.

III. CONCLUSION

The quasi-heat-bath [Eqs. (2)–(4)] is a simple and efficient method to globally change a vector $\vec{\phi}$ distributed according to $(1/Z_{\phi}) e^{-|A\vec{\phi}|^2}$. Like the global heat bath consisting of solving $A\vec{\phi} = \vec{\eta}$, where $\vec{\eta}$ is a Gaussian vector, exactly at each Monte Carlo step, the quasi-heat-bath also has a dynamical critical exponent 1. The prefactor is reduced by a factor of 2–3 because the linear system $A\vec{\phi} = \vec{\eta}$ can now be solved approximately. Whatever the level of accuracy, an acceptance test maintains the exact distribution $e^{-|A\vec{\phi}|^2}$. The most efficient choice for the accuracy level is $O(1/\sqrt{N})$, where N is the volume of the system.

Several generalizations of the quasi-heat-bath have been proposed. A simple modification makes it possible to refresh each of the Fourier components of $A \vec{\phi}$ at a prescribed rate. A local version may be advantageous when the correlation length is moderate. In a limiting case, this version becomes identical to Adler's stochastic overrelaxation.

ACKNOWLEDGMENTS

The author thanks Massimo D'Elia for interesting discussions and valuable comments.

- [1] S.-J. Dong and K.-F. Liu, Phys. Lett. B **328**, 130 (1994), and references therein.
- [2] SESAM Collaboration, N. Eicker *et al.*, Nucl. Phys. B (Proc. Suppl.) 63, 269 (1998); Phys. Lett. B 389, 720 (1996), and references therein.
- [3] Adler's stochastic over-relaxation [4] in principle allows z=1 to be reached. In practice, this requires a careful tuning of the over-relaxation coefficient depending on the spectrum of

A. This is usually difficult to achieve, especially when *A* itself is fluctuating.

- [4] S.L. Adler, Phys. Rev. D 23, 2901 (1981); see S.L. Adler, Nucl. Phys. B (Proc. Suppl.) 9, 437 (1989) for a review of local stochastic overrelaxation.
- [5] See, e.g., H. Gausterer and M. Salmhofer, Phys. Rev. D 40, 2723 (1989).