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Monte Carlo quasi-heat-bath by approximate inversion
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When sampling the distributioR(¢)xexp(~|Ad]?), a global heat bath normally proceeds by solving the
linear systemAd= 7, where is a normal Gaussian vector, exactly. This paper shows how to preserve the

distribution P( ) while solving the linear system with arbitrarily low accuracy. Generalizations are presented.
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In Monte Carlo simulations, it is frequently the case thattribution. This is obtained by the introduction of an accept-
one wants to sample a vectdr from a distribution of the reject test of the Metropolis type, making the procedure a
. =1 . ~ “quasi-heat-bath.” The method is described in Sec. I. Gen-
Gaussian type<exp(—|Ag|). Typically, ¢ has many com- > . . X
) . d . eralizations, including a local version, are presented after-
ponents, andA is a large, sparse matrix. In lattice field

- 2 wards.
theory, ¢ is the value of the continuum field at regular grid
points, andA is the discretized version of some differential
operator A. lllustrative examples used in this paper ate
—m+ip (free field and A=m+ip (Dirac operator. The Efficient Monte Carlo often relies on the subtle introduc-

goal of the Monte Carlo simulation is to provide independenttion of auxiliary degrees of freedom. CP”Si?Zer here a vector
configurations of at the least cost. x distributed according to (Z4) exp(—|x—Ad¢|*). Note that

H N
The brute-force approach consists of drawing successiv_éX IS a constarlt(r for an N-comp_ohent gorr_lple_x ve(itbr
random vectors;® from the normal Gaussian distribution independent ofp. Therefore, the original distribution a,

N N N - - 2 . . . >
exp(=|7/2), and of solvingAd® = 7. The solution of this (1/,4) exp(—|A¢|%), is unchanged by the introduction gf
linear system can be efficiently obtained with an iterative

I. QUASI-HEAT-BATH

linear solver(Conjugate Gradient iA is Hermitian, BiCG- i DJ; ef|A¢Z>|2: 1 f D<Z> Di ef\A$|27|;7AJ>\2_
Stab otherwisge This approach can be called a global heat Z4 Z4Z,
bath, becausé**1) has no memory o: the heat bath (@)

has touched all the components q?)f To avoid a bias, the \we can now alternate Monte Carlo steps &rand ); with
solver must be iterated to full convergence, which is oftenyye following prescription.

prohibitively expensive. One may try to limit the accuracy
while maintaining the bias below statistical errors, but this
requires a delicate compromise difficult to tuaepriori. A . .
notable example of this global heat bath approach is the sto- X — Ao+, ()
chastic evaluation of inverse Dirac matrix elements, where

several hundred “noise vectors" are inverted to yield Wherez is a normal Gaussian vector.
(ATA)ﬁl*WicbjT)k- An abundant literature has been de- (2) ReflectA¢ with respect to the minimum of the qua-

(1) Perform a global heat bath op

voted to the optimization of this proceduir,2]. dratic form (Ad|>+|x—Ad|?):

For the free field or the Dirac operator mentioned above,
the number of iterations of the solver required to reach a Ad— 1—Ad
given accuracy grows like the correlation lengfks1/m. X '

Thus the work per new, independettis c£Z, wherez, the ie.,
dynamical critical exponent, is 1. However, the prefacte
large. For this reason, local updates, where only one compo-

nent of ¢ is changed at a time, are often preferred. They

usually provide an independegt after an amount of work Step(2) conserves the probability 05 but is not ergodic.

¢’ &2, but with a much smaller prefactar [3]. This paper 1 : h icity. N h 5 h
presents an adaptation of the global heat bath which aIIowStep( ) provides the ergodicity. Note that step 2 exchanges

712 > 712 :
for arbitrarily low accuracy in the solution off\qf)z ;7 thus ﬁ].e tW9 terrp§|A¢| and.|X—A¢| in the quadratic fo[m.
reducing the prefactoe, while maintaining the correct dis- S'TceX_Ad’ in step(1) is set to a new random vectoy,
A¢ at the end of steg?) is equal tor. Therefore, a com-
pletely decorrelateds has been generated. The vecjois
*Electronic address: forcrand@scsc.ethz.ch not needed any longer and can be discarded.

¢ A x— . ®3)
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This two-step algorithm can now be modified slightly. 60 pr e
The vectorA*;? in Eq. (3) need not be computed exactly. 40 iterations —
Consider an approximate solutighwith A=y —r, where o0 E
r#0 is the residual. SteﬁQ)_s)hogId now be considered as a 0 Eood od o cod o ol
way to propose a candidat®’ ={— ¢ in a Metropolis pro- 107 10-® 10" 10-° 10-® 10~* 10-® 10-2
cedure. Sincg is completely independent af or &', the P O O IO A IR
probability of proposings’ given ¢ is the same as that of Acceptance
proposing ¢ given ¢'. Detailed balance will be satisfied 0.5~ &
with an additional step: L 0.0 el vl vl il il il 0

(3) Accept the candidate’ = — ¢ with probability 760;9‘ “%9‘78. ”%‘9}77‘ .‘%9‘76‘ “}‘%*5‘ “‘1“9‘*4‘ H%ﬁ)ﬁ ‘ 18*2

Pacc(gZHq_sﬁ):min(l,efAS), (4) gg é_ b. iter. per accepted ¢ _;
whereAS= A 2+ |x— A |2~ |Ad[2— | x— Ad2. ol S T R T R {

Simple algebra shows that 107° 1078 10" 10°® 10°® 10% 10® 10°%

Stopping criterion ||r|| / ||x|

— ot I AT
AS=2Rdr'-(Ag—Ad")], FIG. 1. As the stopping criterion in the iterative solver is varied,

o . . . . the number of solver iterationgop) and the acceptance of the
which is antisymmetric under the fXChang’e_"ﬁ/v as It quasi-heat-batiimiddle) change. The acceptance is well described
should be. If the linear systeli{= x is solved exactly { by Eq.(5) (solid line). The work per newp (bottom shows a clear
=5), thenAS=0, and one recovers the original global heatminimum. The optimal stopping criterion depends on the system

bath with acceptance 1. Otherwise, the candidgtenay be ~ Size 0nly(49 152 her

rejected, in which casé® must be included once more in
the Monte Carlo sequencé®* D= §®. As the residual is ©f € The acceptance obeys eret/N), wherec<1 (0.75

allowed to grow, the average acceptance falls. But no bias id€"® reflects the fact that the residual is always smalter (
introduced: the distribution of remains (1Z,) ex times smaller on averapéhan required by the stopping cri-
' ¢)&XP terion. For this system ol=49 152 variables (8 lattice),

712
(—IAd). . the optimal stopping criterion is near 1%
The optimal magnitude of is thus the result of a com-
promise between accuracy and acceptance. The average ac-

ceptance of the prescriptiotd) is erfo\/((AS)?)/8) [5]. Il. GENERALIZATIONS
Here((AS)?) can be evaluated as a function of the conver- A. Overrelaxation and underrelaxation

gence criterione of the linear solver. If the solver yields a
residual r such that||r||/]|x||<e, then ((AS)?)<8Ne?,
whereAd, Ad’, andr have been considered independent 1 . 1 B

' i ' 2 beIndl’® b Dy e [Ad12-Ix-2Ad
random Gaussian vectors with variandés N, and 2°N, 7 Doe =77 D¢ Dyxe X :
respectively, andN is the number of their components. ¢ X 6)
Therefore, the acceptance is simply

Consider a modification of Eq1) with a parameteh.:

The same three-step algorithm of Sec. | now reads as
(acceptance~erfo e\N). 5 follows.

In other words, the acceptance is entirely determineck by (1) Heat bath ony:

andN, the number of degrees of freeddthe volume of the

system, and isndependentf the matrixA. To maintain a X — NAg+ 7. 7
constant acceptance as the volume grows, the convergence
criterion for the solution ofAZ= y should vary like 1{/N. (2) Reflection of(], about the approximate minimum of

An accuracye~ 10 3-10“ provides an acceptance of 80— the quadratic form:
90 % up to systems of $degrees of freedom. There is no
need for higher accuracy.

The convergence of an iterative solver is typically expo- (;7
nential: e,~e~"¢ after n iterations. Therefore, the above
prescription reduces the work by a factor of 2—3 compared to
the usual approach which iterates the solver until “full” con- s> s o
vergence(which typically means=<108-1019. lllustra- whereAl=x—r. L
tive results are shown in Fig. 1 for the case of the Wilson- (3) Accept ¢’ with probability Pa{¢—¢’)
Dirac operator. This figure shows the number of iterations=min(1e 25 where AS=|A¢'|?+|x—\AS |>—|Ad|?

the acceptance, and the work per indepenefnea&; afunction — |§—AA$|2, and, by simple algebra,

2N .

=1+Ag—$, ®
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AS=2\RgrT (Ad—AH)]. (9  Where
Thus, as\ decreases from 1{(AS)?) also decreases, L(Ata+clc)Z=Cly—r. (15)
which boosts the acceptance. On the other hand(&dqn-
dicates thatp’ approaches- ¢ as\—0, so that¢’ and ¢ (3) Accept ¢’ with  probability Pa{d— ')
become veryanticorrelated. The parametarallows inter-  =min(1e~ %), where
polation between simple reflection €0), and no motion at
all (\=+0). In fact, substituting Eq(7) into Eq. (8) gives AS=2 Re{;‘r,((j)_g)]_

122 o~ For simplicity, consider the case whe@and A commute.

T +—— (A 1p-1). (100 The candidatep’ can be expressed as
1+A27 1422

o ¢ =—(ATA+CTC)"{ATA-CTC) ¢
Takingr=0, one can identify this prescription with that of .
Adler’s stochastic over-relaxatioOR) [4]: +2(ATA+CTC)"Y(Cty—r).

_ . R One wishes to obtain a heat bath~1 in Sec. IlA on
¢'=(1-w)p+Vo(2-w)A 'y, (1) short-wavelength modes. This implies a cancellation of ei-
genvalues in ATA—C'C) for short wavelengths. For long
providedw= 2/(1+\?). The quasi-heat-bath can be viewed wavelengths a heat bath is not necessary, and one could have

as a flexible global generalization of Adler's AOR. A~0 or +%. One possible way to implement this would be
It is clear from Eq.(9) that A<1 allows for a looser
convergence criteriore~1/A. However, the work to reach C=F IAFA,

convergence typically grows like-log €, whereas Eq(10)

indicates that the number of Monte Carlo steps to decorrelatehereF is the Fourier transform and is a diagonal matrix

& will grow like 1/\2. Therefore, it seems inadvisable to with entries\ (k) growing from O to 1 with momenturk].

depart fromx = 1. However, for operatorsA of the free field or Dirac type, a
Nonetheless, there are many situations where a consimpler and equivalent way consists of modifying the mass

pletely independeng at each Monte Carlo step is a wasteful parameterm to mc>m. This is equivalent tox(|k|)

luxury. When the matriA fluctuates and depends on other = \/(m&+k?)/(m?+k?).

variablesU, it will take some time for théJ to equilibrate in The mass which enters into the linear system to s

the new background* V. Equilibration will be achieved is Mg= \(M?+m2)/2. As m¢ is increased, so iBg;. The

quickly over short distances, more slowly over large ones. Irwork to solve Eq.(15) approximately decreases asnlf.

that case it is useful to refresh the short-wavelength modes dfherefore, one achieves the desired effect of refreshing

¢ at every MC step, but not the long-wavelength ones. Thghort-wavelength modes at cheaper cost. By drawng

situation is similar for the stochastic evaluation of inverserandomly from a suitable distribution at each Monte Carlo

Dirac matrix elements: one is interested in estimatingStep, the tailored refreshing of all Fourier modes with the

(ATA);*, where the distancg —j| is short. Refreshing the desired frequency can be achieved.

long-wavelength modes every time is wasteful.

C. Local version

B. Selective mode refresh The quasi-heat-bath described so far is a global update
The quasi-heat-bath may be tailored for this purpose b>procedure: all components @f are updated together. A local
modifying the basic equatiofl) to version readily suggests itself: restricting the auxiliary vector

x to have only one nonzero componegt= X6 i, (or any

if DJ’ o IAB2_ 1 f D(Z D); o 1AG2-1i—Cil2. subset of componentsEquation(1) then becomes
Zy ZyZy
(12 zif D(;e—\Aq‘swzzzlz fD(;D);e—|A43\2—\x—<A$>io|2,
. . ¢ ¢
The matrix C plays the role of the earliexA, except that * (16
now \ depends on the eigenmode considered. The three ba- ) )
sic steps of the algorithm become the following. The algorithm is unchanged.

- 1) Heat bath ony: Ad): + 7.
(1) Heat bath ory: @) : x—(Ad)i;+ 7

JeCodt (13) (2) Approximate reflection ofp: ¢ =¢— ¢, where Al

=x—T.
the(Z)u:éarf;?ic;ti%r; n?'fd) about the approximate minimum of (3) Accept &' with probabilitya Pac E( d— E)
q : =min(1e %%,  where  AS=Rdr'- (Ad—AF)]

— >

$=i-, (14 +Rer{[(Ad)i,~ (Ad)); -
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In this Casez is the approximate Green’s function Af This reflection is exact, and so the acceptance test disap-
for a source at,. It will have a support of siz®(&), so that  Pears. The new reflected value is
the local change in(io will induce a change inp over a

whole domain. By varyind, from 1 to N, one sweeps the Ax— ¢ —2\2
L (i) =2 X (i ) — — Py
whole system and generates a new vear' V. If the ac- ¢'(io)= 102 $(io)= 102 $(io) 102 4
ceptance is maintained close tod** 1) will essentially be
uncorrelated withp®. However, the work per local update N 2\
is proportional to£? in d dimensions, so that this approach 1422 G

becomes very inefficient when the correlation lengdths
large. Nevertheless, it may be advantageous for mod€rate This prescription is identical to Adler's stochastic over-
The reason is that the approximate solutira A~y 8(ip)  relaxation[4] with the change of notatiom«— 2/(1+\?).
need not be obtained by a Krylov method, which applies
successive powers @& to the initial residual. Instead, one

. lIl. CONCLUSION
may search for the best solutighamong all vectors of lo-
calized support, for instanci, and its nearest neighbors. The quasi-heat-batfEgs. (2)—(4)] is a simple and effi-
cient method to globally change a vectprdistributed ac-
D. Adler’s stochastic overrelaxation cording to (1Z,) e 184 |ike the global heat bath consist-

Finally, the local variabley&(i,io) may interact withg in 1N Of SOVingA¢ =7, wherez is a Gaussian vector, exactly
the simplest way, with a contact interaction. This modifies@t €ach Monte Carlo step, the quasi-heat-bath also has a dy-
Eq. (1) to namical critical exponent 1. The prefagtor:s reduced by a

factor of 2—3 because the linear systé&wp= » can now be

1 s nd? 1 . A= Ao solved approximately. Whatever the level of ag(;uracy, an

Z_(,J Dge = Z¢fo D¢dye o acceptance test maintains the exact distribuéiol?!”. The

(17) most efficient choice for the accuracy level @(1/\N),
whereN is the volume of the system.
If one chooses to update only(io) and leave the other  Several generalizations of the quasi-heat-bath have been
components offs unchanged, then there is no need to invertproposed. A simple modification makes it possible to refresh
the matrixA. The algorithm simplifies to the following. each of the Fourier componentsA at a prescribed rate. A
. local version may be advantageous when the correlation

(1) Heat bath ony: X\ ¢(io) + 7. length is moderatﬁ. In a Iimitinggcase, this version becomes

(2) Reflection of¢(iy) with respect to the minimum of identical to Adler’s stochastic overrelaxation.
the quadratic form,
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