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Monte Carlo quasi-heat-bath by approximate inversion
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~Received 5 November 1998!

When sampling the distributionP(fW )}exp(2uAfW u2), a global heat bath normally proceeds by solving the

linear systemAfW 5hW , wherehW is a normal Gaussian vector, exactly. This paper shows how to preserve the

distributionP(fW ) while solving the linear system with arbitrarily low accuracy. Generalizations are presented.
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In Monte Carlo simulations, it is frequently the case th

one wants to sample a vectorfW from a distribution of the

Gaussian type}exp(2uAfW u2). Typically, fW has many com-
ponents, andA is a large, sparse matrix. In lattice fie

theory,fW is the value of the continuum fieldwW at regular grid
points, andA is the discretized version of some differenti
operatorA. Illustrative examples used in this paper areA
5m1 ipW ~free field! andA5m1 ip” ~Dirac operator!. The
goal of the Monte Carlo simulation is to provide independ

configurations offW at the least cost.
The brute-force approach consists of drawing succes

random vectorshW (k) from the normal Gaussian distributio

exp(2uhW u2), and of solvingAfW (k)5hW (k). The solution of this
linear system can be efficiently obtained with an iterat
linear solver~Conjugate Gradient ifA is Hermitian, BiCG-
Stab otherwise!. This approach can be called a global he

bath, becausefW (k11) has no memory offW (k): the heat bath

has touched all the components offW . To avoid a bias, the
solver must be iterated to full convergence, which is of
prohibitively expensive. One may try to limit the accura
while maintaining the bias below statistical errors, but t
requires a delicate compromise difficult to tunea priori. A
notable example of this global heat bath approach is the
chastic evaluation of inverse Dirac matrix elements, wh
several hundred ‘‘noise vectors’’hW (k) are inverted to yield
(A†A) i j

21'^f if j
†&k . An abundant literature has been d

voted to the optimization of this procedure@1,2#.
For the free field or the Dirac operator mentioned abo

the number of iterations of the solver required to reac
given accuracy grows like the correlation lengthj[1/m.
Thus the work per new, independent,fW is cjz, wherez, the
dynamical critical exponent, is 1. However, the prefactorc is
large. For this reason, local updates, where only one com
nent of fW is changed at a time, are often preferred. Th
usually provide an independentfW after an amount of work
c8j2, but with a much smaller prefactorc8 @3#. This paper
presents an adaptation of the global heat bath which all
for arbitrarily low accuracy in the solution ofAfW 5hW , thus
reducing the prefactorc, while maintaining the correct dis

*Electronic address: forcrand@scsc.ethz.ch
PRE 591063-651X/99/59~3!/3698~4!/$15.00
t

t

ve

t

n

s

o-
e

,
a

o-
y

s

tribution. This is obtained by the introduction of an acce
reject test of the Metropolis type, making the procedure
‘‘quasi-heat-bath.’’ The method is described in Sec. I. Ge
eralizations, including a local version, are presented af
wards.

I. QUASI-HEAT-BATH

Efficient Monte Carlo often relies on the subtle introdu
tion of auxiliary degrees of freedom. Consider here a vec
xW distributed according to (1/Zx) exp(2uxW2AfW u2). Note that
Zx is a constant (pN for an N-component complex vector!

independent offW . Therefore, the original distribution offW ,
(1/Zf) exp(2uAfW u2), is unchanged by the introduction ofxW :

1

Zf
E DfW e2uAfW u25

1

ZfZx
E DfW DxW e2uAfW u22uxW 2AfW u2.

~1!

We can now alternate Monte Carlo steps onfW andxW , with
the following prescription.

~1! Perform a global heat bath onxW :

xW ← AfW 1hW , ~2!

wherehW is a normal Gaussian vector.
~2! ReflectAfW with respect to the minimum of the qua

dratic form (uAfW u21uxW 2AfW u2):

AfW ← xW 2AfW ,

i.e.,

fW ← A21xW 2fW . ~3!

Step ~2! conserves the probability offW but is not ergodic.
Step~1! provides the ergodicity. Note that step 2 exchang
the two termsuAfW u2 and uxW 2AfW u2 in the quadratic form.
SincexW 2AfW in step ~1! is set to a new random vectorhW ,
AfW at the end of step~2! is equal tohW . Therefore, a com-
pletely decorrelatedfW has been generated. The vectorxW is
not needed any longer and can be discarded.
3698 ©1999 The American Physical Society
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This two-step algorithm can now be modified slightl
The vectorA21xW in Eq. ~3! need not be computed exactl
Consider an approximate solutionzW with AzW5xW 2rW, where
rWÞ0W is the residual. Step~2! should now be considered as
way to propose a candidatef8W5zW2fW in a Metropolis pro-
cedure. SincezW is completely independent offW or f8W , the
probability of proposingf8W given fW is the same as that o
proposingfW given f8W . Detailed balance will be satisfie
with an additional step:

~3! Accept the candidatef8W5zW2fW with probability

Pacc~fW→f8W !5min~1,e2DS!, ~4!

whereDS5uAf8W u21uxW 2Af8W u22uAfW u22uxW 2AfW u2.
Simple algebra shows that

DS52 Re@rW†
•~AfW 2Af8W !#,

which is antisymmetric under the exchangefW↔f8W , as it
should be. If the linear systemAzW5xW is solved exactly (rW

50W ), thenDS50, and one recovers the original global he
bath with acceptance 1. Otherwise, the candidatef8W may be
rejected, in which casefW (k) must be included once more i
the Monte Carlo sequence:fW (k11)5fW (k). As the residual is
allowed to grow, the average acceptance falls. But no bia
introduced: the distribution offW remains (1/Zf) exp
(2uAfW u2).

The optimal magnitude ofrW is thus the result of a com
promise between accuracy and acceptance. The averag
ceptance of the prescription~4! is erfc„A^(DS)2&/8… @5#.
Here ^(DS)2& can be evaluated as a function of the conv
gence criterione of the linear solver. If the solver yields
residual rW such that zurWuz/ zuxW uz <e, then ^(DS)2&<8Ne2,
whereAfW , Af8W , and rW have been considered independe
random Gaussian vectors with variancesN, N, and 2e2N,
respectively, andN is the number of their component
Therefore, the acceptance is simply

^acceptance&'erfc~eAN!. ~5!

In other words, the acceptance is entirely determined be
andN, the number of degrees of freedom~the volume! of the
system, and isindependentof the matrixA. To maintain a
constant acceptance as the volume grows, the converg
criterion for the solution ofAzW5xW should vary like 1/AN.
An accuracye;1023– 1024 provides an acceptance of 80
90 % up to systems of 106 degrees of freedom. There is n
need for higher accuracy.

The convergence of an iterative solver is typically exp
nential: en;e2n/j after n iterations. Therefore, the abov
prescription reduces the work by a factor of 2–3 compare
the usual approach which iterates the solver until ‘‘full’’ co
vergence~which typically meanse&1028– 10212). Illustra-
tive results are shown in Fig. 1 for the case of the Wilso
Dirac operator. This figure shows the number of iteratio
the acceptance, and the work per independentfW as a function
t
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of e. The acceptance obeys erfc(ceAN), wherec,1 ~0.75
here! reflects the fact that the residual is always smallerc
times smaller on average! than required by the stopping cr
terion. For this system ofN549 152 variables (84 lattice!,
the optimal stopping criterion is near 1023.

II. GENERALIZATIONS

A. Overrelaxation and underrelaxation

Consider a modification of Eq.~1! with a parameterl:

1

Zf
E DfW e2uAfW u25

1

ZfZx
E DfW DxW e2uAfW u22uxW 2lAfW u2.

~6!

The same three-step algorithm of Sec. I now reads
follows.

~1! Heat bath onxW :

xW ← lAfW 1hW . ~7!

~2! Reflection offW about the approximate minimum o
the quadratic form:

f8W5
2l

11l2
zW2fW , ~8!

whereAzW5xW 2rW.
~3! Accept f8W with probability Pacc(fW→f8W )

5min(1,e2DS) where DS5uAf8W u21uxW 2lAf8W u22uAfW u2

2uxW 2lAfW u2, and, by simple algebra,

FIG. 1. As the stopping criterion in the iterative solver is varie
the number of solver iterations~top! and the acceptance of th
quasi-heat-bath~middle! change. The acceptance is well describ

by Eq.~5! ~solid line!. The work per newfW ~bottom! shows a clear
minimum. The optimal stopping criterion depends on the syst
size only~49 152 here!.
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DS52l Re@rW†
•~AfW 2Af8W !#. ~9!

Thus, asl decreases from 1,̂(DS)2& also decreases
which boosts the acceptance. On the other hand, Eq.~8! in-
dicates thatf8W approaches2fW asl→0, so thatf8W andfW
become very~anti!correlated. The parameterl allows inter-
polation between simple reflection (l50), and no motion at
all (l51`). In fact, substituting Eq.~7! into Eq. ~8! gives

f8W52
12l2

11l2
fW 1

2l

11l2
~A21hW 2rW !. ~10!

Taking rW50W , one can identify this prescription with that o
Adler’s stochastic over-relaxation~AOR! @4#:

f8W5~12v!fW 1Av~22v!A21hW , ~11!

providedv5 2/(11l2). The quasi-heat-bath can be viewe
as a flexible,global generalization of Adler’s AOR.

It is clear from Eq.~9! that l,1 allows for a looser
convergence criterione;1/l. However, the work to reach
convergence typically grows like2 loge, whereas Eq.~10!
indicates that the number of Monte Carlo steps to decorre
fW will grow like 1/l2. Therefore, it seems inadvisable
depart froml51.

Nonetheless, there are many situations where a c
pletely independentfW at each Monte Carlo step is a wastef
luxury. When the matrixA fluctuates and depends on oth
variablesU, it will take some time for theU to equilibrate in
the new backgroundfW (k11). Equilibration will be achieved
quickly over short distances, more slowly over large ones
that case it is useful to refresh the short-wavelength mode
fW at every MC step, but not the long-wavelength ones. T
situation is similar for the stochastic evaluation of inver
Dirac matrix elements: one is interested in estimat
(A†A) i j

21 , where the distanceu i 2 j u is short. Refreshing the
long-wavelength modes every time is wasteful.

B. Selective mode refresh

The quasi-heat-bath may be tailored for this purpose
modifying the basic equation~1! to

1

Zf
E DfW e2uAfW u25

1

ZfZx
E DfW DxW e2uAfW u22uxW 2CfW u2.

~12!

The matrixC plays the role of the earlierlA, except that
now l depends on the eigenmode considered. The three
sic steps of the algorithm become the following.

~1! Heat bath onxW :

xW←CfW 1hW ; ~13!

~2! Reflection offW about the approximate minimum o
the quadratic form:

f8W5zW2fW , ~14!
te

-

n
of
e

g

y

a-

where

1
2 ~A†A1C†C!zW5C†xW2rW. ~15!

~3! Accept f8W with probability Pacc(fW→f8W )
5min(1,e2DS), where

DS52 Re@rW†
•~fW 2f8W !#.

For simplicity, consider the case whereC and A commute.
The candidatef8W can be expressed as

f8W52~A†A1C†C!21~A†A2C†C!fW

12~A†A1C†C!21~C†hW 2rW !.

One wishes to obtain a heat bath (l;1 in Sec. II A! on
short-wavelength modes. This implies a cancellation of
genvalues in (A†A2C†C) for short wavelengths. For long
wavelengths a heat bath is not necessary, and one could
l;0 or 1`. One possible way to implement this would b

C5F21LFA,

whereF is the Fourier transform andL is a diagonal matrix
with entriesl(kW ) growing from 0 to 1 with momentumukW u.
However, for operatorsA of the free field or Dirac type, a
simpler and equivalent way consists of modifying the ma
parameter m to mC.m. This is equivalent tol(ukW u)
5A(mC

2 1k2)/(m21k2).
The mass which enters into the linear system to solve~15!

is meff5A(m21mC
2 )/2. As mC is increased, so ismeff . The

work to solve Eq.~15! approximately decreases as 1/meff .
Therefore, one achieves the desired effect of refresh
short-wavelength modes at cheaper cost. By drawingmC
randomly from a suitable distribution at each Monte Ca
step, the tailored refreshing of all Fourier modes with t
desired frequency can be achieved.

C. Local version

The quasi-heat-bath described so far is a global upd
procedure: all components offW are updated together. A loca
version readily suggests itself: restricting the auxiliary vec
xW to have only one nonzero component,x i5xd i ,i 0

~or any
subset of components!. Equation~1! then becomes

1

Zf
E DfW e2uAfW u25

1

ZfZx
E DfW DxW e2uAfW u22ux2~AfW ! i 0

u2.

~16!

The algorithm is unchanged.

~1! Heat bath onx: x←(AfW ) i 0
1h.

~2! Approximate reflection offW : f8W5zW2fW , whereAzW

5xW 2rW.

~3! Accept f8W with probability Pacc(fW→f8W )
5min(1,e2DS), where DS5Re@rW†

•(AfW 2Af8W )#

1Re„r i 0
! @(AfW ) i 0

2(Af8W ) i 0
#….
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In this case,zW is the approximate Green’s function ofA
for a source ati 0 . It will have a support of sizeO(j), so that
the local change inx i 0

will induce a change inf over a

whole domain. By varyingi 0 from 1 to N, one sweeps the
whole system and generates a new vectorfW (k11). If the ac-
ceptance is maintained close to 1,fW (k11) will essentially be
uncorrelated withfW (k). However, the work per local updat
is proportional tojd in d dimensions, so that this approac
becomes very inefficient when the correlation lengthj is
large. Nevertheless, it may be advantageous for moderaj.
The reason is that the approximate solutionzW'A21xd( i 0)
need not be obtained by a Krylov method, which appl
successive powers ofA to the initial residual. Instead, on
may search for the best solutionzW among all vectors of lo-
calized support, for instance,i 0 and its nearest neighbors.

D. Adler’s stochastic overrelaxation

Finally, the local variablexd( i ,i 0) may interact withfW in
the simplest way, with a contact interaction. This modifi
Eq. ~1! to

1

Zf
E DfW e2uAfW u25

1

ZfZx
E DfW dx e2uAfW u22ux2lf~ i 0!u2.

~17!

If one chooses to update onlyf( i 0) and leave the othe
components offW unchanged, then there is no need to inv
the matrixA. The algorithm simplifies to the following.

~1! Heat bath onx: x←lf( i 0)1h.

~2! Reflection off( i 0) with respect to the minimum o
the quadratic form,

~m21l2!uf~ i 0!u21@f~ i 0!†~c2lx!1H.c.#1const,

wherem2[(A†A) i 0i 0
andc[(A†A) i 0 jf( j ).
o
o

s

s

t

This reflection is exact, and so the acceptance test di
pears. The new reflected value is

f8~ i 0!52
lx2c

11l2
2f~ i 0!52

12l2

11l2
f~ i 0!2

2

11l2
c

1
2l

11l2
h.

This prescription is identical to Adler’s stochastic ove
relaxation@4# with the change of notationv↔2/(11l2).

III. CONCLUSION

The quasi-heat-bath@Eqs. ~2!–~4!# is a simple and effi-
cient method to globally change a vectorfW distributed ac-
cording to (1/Zf) e2uAfW u2. Like the global heat bath consis
ing of solvingAfW 5hW , wherehW is a Gaussian vector, exactl
at each Monte Carlo step, the quasi-heat-bath also has a
namical critical exponent 1. The prefactor is reduced b
factor of 2–3 because the linear systemAfW 5hW can now be
solved approximately. Whatever the level of accuracy,
acceptance test maintains the exact distributione2uAfW u2. The
most efficient choice for the accuracy level isO(1/AN),
whereN is the volume of the system.

Several generalizations of the quasi-heat-bath have b
proposed. A simple modification makes it possible to refre
each of the Fourier components ofAfW at a prescribed rate. A
local version may be advantageous when the correla
length is moderate. In a limiting case, this version becom
identical to Adler’s stochastic overrelaxation.

ACKNOWLEDGMENTS

The author thanks Massimo D’Elia for interesting discu
sions and valuable comments.
@1# S.-J. Dong and K.-F. Liu, Phys. Lett. B328, 130 ~1994!, and
references therein.

@2# SESAM Collaboration, N. Eickeret al., Nucl. Phys. B~Proc.
Suppl.! 63, 269 ~1998!; Phys. Lett. B389, 720 ~1996!, and
references therein.

@3# Adler’s stochastic over-relaxation@4# in principle allows
z51 to be reached. In practice, this requires a careful tuning
the over-relaxation coefficient depending on the spectrum
f
f

A. This is usually difficult to achieve, especially whenA itself

is fluctuating.
@4# S.L. Adler, Phys. Rev. D23, 2901 ~1981!; see S.L. Adler,

Nucl. Phys. B~Proc. Suppl.! 9, 437 ~1989! for a review of
local stochastic overrelaxation.

@5# See, e.g., H. Gausterer and M. Salmhofer, Phys. Rev. D40,
2723 ~1989!.


